[References] The Stealthy Factor: sfRNA Orchestrates Infection
- M. J. Adams, E. J. Lefkowitz, A. M. Q. King et al., “50 years of the International Committee on Taxonomy of Viruses: progress and prospects”, Arch. Virol., 2017, 162(5), 1441-1446.
- S. Bhatt, P. W. Gething, O. J. Brady et al., “The global distribution and burden of dengue”, Nature, 2013, 496(7446), 504-507.
- T. J. Chambers, C. S. Hahn, R. Galler and C. M. Rice, “Flavivirus genome organization, expression, and replication”, Annu. Rev. Microbiol., 1990, 44, 649-688.
- A. A. Khromykh, H. Meka, K. J. Guyatt and E. G. Westaway, “Essential role of cyclization sequences in flavivirus RNA replication”, J. Virol., 2001, 75(14), 6719-6728.
- K. L. Holden and E. Harris, “Enhancement of dengue virus translation: role of the 3’ untranslated region and the terminal 3’ stem-loop domain”, Virology, 2004, 329(1), 119-133.
- G. P. Pijlman, A. Funk, N. Kondratieva et al., “A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity”, Cell Host Microbe, 2008, 4(6), 579-591.
- N. Urosevic, M. van Maanen, J. P. Mansfield et al., “Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus”, J. Gen. Virol., 1997, 78(1), 23-29.
- A. MacFadden, Z. O’Donoghue, P. Silva et al., “Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs”, Nat. Commun., 2018, 9(1), 119.
- A. Funk, K. Truong, T. Nagasaki et al., “RNA structures required for production of subgenomic flavivirus RNA”, J. Virol., 2010, 84(21), 11407-11417.
- P. A. Silva, C. F. Pereira, T. J. Dalebout, W. J. Spaan and P. J. Bredenbeek, “An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1”, J. Virol., 2010, 84(21), 11395-11406.
- C. V. Filomatori, J. M. Carballeda, S. M. Villordo et al., “Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells”, PLoS Pathog., 2017, 13(3), e1006265.
- Y. Liu, H. Liu, J. Zou, B. Zhang and Z. Yuan, “Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway”, Virology, 2014, 448, 15-25.
- A. Slonchak, L. E. Hugo, M. E. Freney et al., “Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes”, Nat. Commun., 2020, 11(1), 2205.
- G. P. Goertz, J. W. M. van Bree, A. Hiralal et al., “Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti”, Proc. Natl. Acad. Sci. U.S.A., 2019, 116(38), 19136-19144.
- S. C. Yeh, T. Strilets, W. L. Tan et al., “The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity”, PLoS Pathog., 2023, 19(3), e1011224.
- G. Manokaran, E. Finol, C. Wang et al., “Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness”, Science, 2015, 350(6257), 217-221.
- T. Okamoto, T. Suzuki, S. Kusakabe et al., “Regulation of apoptosis during flavivirus infection”, Viruses, 2017, 9(9).
- A. Slonchak and A. A. Khromykh, “Subgenomic flaviviral RNAs: what do we know after the first decade of research”, Antiviral Res., 2018, 159, 13-25.
- R. Delli Ponti, A. Vandelli and G. G. Tartaglia, “Subgenomic flaviviral RNAs and human proteins: in silico exploration of anti-host defense mechanisms”, Comput. Struct. Biotechnol. J., 2024, 23, 3527-3536.
- E. G. Chapman, D. A. Costantino, J. L. Rabe et al., “The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production”, Science, 2014, 344(6181), 307-310.
- O. Choksupmanee, W. Tangkijthavorn, K. Hodge et al., “Specific interaction of DDX6 with an RNA hairpin in the 3’ UTR of the dengue virus genome mediates G1 phase arrest”, J. Virol., 2021, 95(17), e0051021.
- K. Hodge, C. Tunghirun, M. Kamkaew et al., “Identification of a conserved RNA-dependent RNA polymerase (RdRp)-RNA interface required for flaviviral replication”, J. Biol. Chem., 2016, 291(33), 17437-17449.
- S. M. Paranjape and E. Harris, “Y box-binding protein-1 binds to the dengue virus 3’-untranslated region and mediates antiviral effects”, J. Biol. Chem., 2007, 282(42), 30497-30508.
- A. M. Ward, K. Bidet, A. Yinglin et al., “Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures”, RNA Biol., 2011, 8(6), 1173-1186.
- K. Bidet, D. Dadlani and M. A. Garcia-Blanco, “G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA”, PLoS Pathog., 2014, 10(7), e1004242.
- D. Michalski, J. G. Ontiveros, J. Russo et al., “Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection”, J. Biol. Chem., 2019, 294(44), 16282-16296.
- N. R. Choudhury, G. Heikel, M. Trubitsyna et al., “RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination”, BMC Biol., 2017, 15(1), 105.
- J. H. Lumb, Q. Li, L. M. Popov et al., “DDX6 represses aberrant activation of interferon-stimulated genes”, Cell Rep., 2017, 20(4), 819-831.
- A. Slonchak, X. Wang, J. Aguado et al., “Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis”, Sci. Adv., 2022, 8(48), eadd8095.
- K. Doets and G. P. Pijlman, “Subgenomic flavivirus RNA as key target for live-attenuated vaccine development”, J. Virol., 2024, 98(7), e0010023.
- S. S. Whitehead, A. P. Durbin, K. K. Pierce et al., “In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination”, PLoS Negl. Trop. Dis., 2017, 11(5), e0005584.
- J. Bustos-Arriaga, G. D. Gromowski, K. A. Tsetsarkin et al., “Decreased accumulation of subgenomic RNA in human cells infected with vaccine candidate DEN4 Δ30 increases viral susceptibility to type I interferon”, Vaccine., 2018, 36(24), 3460-3467.
- C. Shan, A. E. Muruato, B. T. D. Nunes et al., “A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models”, Nat. Med., 2017, 23(6), 763-767.