[References] The Stealthy Factor: sfRNA Orchestrates Infection

  1. M. J. Adams, E. J. Lefkowitz, A. M. Q. King et al., “50 years of the International Committee on Taxonomy of Viruses: progress and prospects”, Arch. Virol., 2017, 162(5), 1441-1446.
  2. S. Bhatt, P. W. Gething, O. J. Brady et al., “The global distribution and burden of dengue”, Nature, 2013, 496(7446), 504-507.
  3. T. J. Chambers, C. S. Hahn, R. Galler and C. M. Rice, “Flavivirus genome organization, expression, and replication”, Annu. Rev. Microbiol., 1990, 44, 649-688.
  4. A. A. Khromykh, H. Meka, K. J. Guyatt and E. G. Westaway, “Essential role of cyclization sequences in flavivirus RNA replication”, J. Virol., 2001, 75(14), 6719-6728.
  5. K. L. Holden and E. Harris, “Enhancement of dengue virus translation: role of the 3’ untranslated region and the terminal 3’ stem-loop domain”, Virology, 2004, 329(1), 119-133.
  6. G. P. Pijlman, A. Funk, N. Kondratieva et al., “A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity”, Cell Host Microbe, 2008, 4(6), 579-591.
  7. N. Urosevic, M. van Maanen, J. P. Mansfield et al., “Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus”, J. Gen. Virol., 1997, 78(1), 23-29.
  8. A. MacFadden, Z. O’Donoghue, P. Silva et al., “Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs”, Nat. Commun., 2018, 9(1), 119.
  9. A. Funk, K. Truong, T. Nagasaki et al., “RNA structures required for production of subgenomic flavivirus RNA”, J. Virol., 2010, 84(21), 11407-11417.
  10. P. A. Silva, C. F. Pereira, T. J. Dalebout, W. J. Spaan and P. J. Bredenbeek, “An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1”, J. Virol., 2010, 84(21), 11395-11406.
  11. C. V. Filomatori, J. M. Carballeda, S. M. Villordo et al., “Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells”, PLoS Pathog., 2017, 13(3), e1006265.
  12. Y. Liu, H. Liu, J. Zou, B. Zhang and Z. Yuan, “Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway”, Virology, 2014, 448, 15-25.
  13. A. Slonchak, L. E. Hugo, M. E. Freney et al., “Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes”, Nat. Commun., 2020, 11(1), 2205.
  14. G. P. Goertz, J. W. M. van Bree, A. Hiralal et al., “Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti”, Proc. Natl. Acad. Sci. U.S.A., 2019, 116(38), 19136-19144.
  15. S. C. Yeh, T. Strilets, W. L. Tan et al., “The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity”, PLoS Pathog., 2023, 19(3), e1011224.
  16. G. Manokaran, E. Finol, C. Wang et al., “Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness”, Science, 2015, 350(6257), 217-221.
  17. T. Okamoto, T. Suzuki, S. Kusakabe et al., “Regulation of apoptosis during flavivirus infection”, Viruses, 2017, 9(9).
  18. A. Slonchak and A. A. Khromykh, “Subgenomic flaviviral RNAs: what do we know after the first decade of research”, Antiviral Res., 2018, 159, 13-25.
  19. R. Delli Ponti, A. Vandelli and G. G. Tartaglia, “Subgenomic flaviviral RNAs and human proteins: in silico exploration of anti-host defense mechanisms”, Comput. Struct. Biotechnol. J., 2024, 23, 3527-3536.
  20. E. G. Chapman, D. A. Costantino, J. L. Rabe et al., “The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production”, Science, 2014, 344(6181), 307-310.
  21. O. Choksupmanee, W. Tangkijthavorn, K. Hodge et al., “Specific interaction of DDX6 with an RNA hairpin in the 3’ UTR of the dengue virus genome mediates G1 phase arrest”, J. Virol., 2021, 95(17), e0051021.
  22. K. Hodge, C. Tunghirun, M. Kamkaew et al., “Identification of a conserved RNA-dependent RNA polymerase (RdRp)-RNA interface required for flaviviral replication”, J. Biol. Chem., 2016, 291(33), 17437-17449.
  23. S. M. Paranjape and E. Harris, “Y box-binding protein-1 binds to the dengue virus 3’-untranslated region and mediates antiviral effects”, J. Biol. Chem., 2007, 282(42), 30497-30508.
  24. A. M. Ward, K. Bidet, A. Yinglin et al., “Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures”, RNA Biol., 2011, 8(6), 1173-1186.
  25. K. Bidet, D. Dadlani and M. A. Garcia-Blanco, “G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA”, PLoS Pathog., 2014, 10(7), e1004242.
  26. D. Michalski, J. G. Ontiveros, J. Russo et al., “Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection”, J. Biol. Chem., 2019, 294(44), 16282-16296.
  27. N. R. Choudhury, G. Heikel, M. Trubitsyna et al., “RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination”, BMC Biol., 2017, 15(1), 105.
  28. J. H. Lumb, Q. Li, L. M. Popov et al., “DDX6 represses aberrant activation of interferon-stimulated genes”, Cell Rep., 2017, 20(4), 819-831.
  29. A. Slonchak, X. Wang, J. Aguado et al., “Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis”, Sci. Adv., 2022, 8(48), eadd8095.
  30. K. Doets and G. P. Pijlman, “Subgenomic flavivirus RNA as key target for live-attenuated vaccine development”, J. Virol., 2024, 98(7), e0010023.
  31. S. S. Whitehead, A. P. Durbin, K. K. Pierce et al., “In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination”, PLoS Negl. Trop. Dis., 2017, 11(5), e0005584.
  32. J. Bustos-Arriaga, G. D. Gromowski, K. A. Tsetsarkin et al., “Decreased accumulation of subgenomic RNA in human cells infected with vaccine candidate DEN4 Δ30 increases viral susceptibility to type I interferon”, Vaccine., 2018, 36(24), 3460-3467.
  33. C. Shan, A. E. Muruato, B. T. D. Nunes et al., “A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models”, Nat. Med., 2017, 23(6), 763-767.
TOP