[参考文献] 次世代の分子認識素子「核酸アプタマー」の開発と今後の展望
- C. Ji et al., Chem. Rev., 2023, 123, 12471-12506.
- S. Xie et al., J. Am. Chem. Soc., 2023, 145, 7677-7691.
- A. D. Keefe et al., Nat. Rev., 2010, 9, 537-550.
- S. Yoon et al., Adv. Drug Deliv. Rev., 2018, 22-35.
- D. L. Robertson et al., Nature, 1990, 344, 467-468.
- G. Tuerk et al., Science, 1990, 249, 505-510.
- R. Green et al., Nature, 1990, 347, 406-408.
- R. D. Jenison et al., Science, 1994, 263, 1425-1429.
- A. Geiger et al., Nucl. Acids Res., 1996, 24, 1029-1036.
- J. M. Carothers, J. Am. Chem. Soc., 2006, 128, 7929-7937.
- M. Berezovski et al., J. Am. Chem. Soc., 2002, 124, 13674-13675.
- S. D. Mendonsa et al., J. Am. Chem. Soc., 2003, 126, 20-21.
- Y. Kasahara et al., Anal. Chem., 2013, 85, 4961-4967.
- S. Saito, Anal. Sci., 2021, 37, 17-26.
- K. Wakui et al., Mol. Ther.-Nucleic Acids, 2019, 16, 348-359.
- N. Savory et al., Biosens. Bioelectron., 2010, 2, 1386-1391.
- E. L. Cheng et al., J. Am. Chem. Soc., 2022, 144, 13851-13864.
- N. Kacherovsky et al., Angw. Chem. Int. Ed., 2021, 60, 21211-21215.
- K. Sefah et al., Nat. Protoc., 2010, 5, 1169-1185.
- B. J. Hicke et al., J. Biol. Chem., 2001, 276, 48644-48654.
- S. E. Wilner et al., Mol. Ther.-Nucleic Acids, 2012, 1, e21.
- J. Mi et al., Nature Chem. Biol., 2010, 6, 22-24.
- P. J. Bates et al., J. Biol. Chem., 1999, 274, 26369-26377.
- D. Shangguan et al., J. Preteome Res., 2008, 7, 2133-2139.
- S. G. Sayyed et al., Diabetologia, 2009, 52, 2445-2454.
- T. N. Zamay et al., Nucleic Acid Therr., 2014, 24, 160-170.
- S. E. Lupold et al., Cancer Res., 2002, 62, 4029-4033.
- N. Ababneh et al., Nucleic Acid Ther., 2013, 23, 401-407.
- Y. Song et al., Anal. Chem., 2013, 85, 4141-4149.
- W.-Y. Lai et al., Mol. Ther.-Nucleic Acids, 2016, 5, e397.
- C. S. M. Ferreira et al, Anal. Bioanal. Chem., 2008, 390, 1039-1050.
- N. Li et al., PLoS One, 2011, 6, e20299.
- G. Mahlknecht et al., Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 8170-8175.
- J. Ruckman et al., J. Biol. Chem., 1998, 273, 20556-20567.
- F. Pastor et al., Mol. Ther.-Nucleic Acids, 2013, 2, e98.
- C. M. Dollins et al., Chem. Biol., 2008, 15, 675-682.
- J. O. McNamara II et al., J. Clin. Invest., 2008, 118, 376-386.
- P. Zhang et al., Lab. Invest., 2009, 89, 1423-1432.
- L. Tian et al., Sci. China Chem., 2022, 65, 574-583.
- L. Zhang et al., Mol. Ther.-Nucleic Acids, 2022, 30, 66-79.
- J. Macdonald et al., ACS Chem. Neurosci., 2017, 8, 777-784.
- Y.-C. Shiang et al., Angew. Chem. Int. Ed., 2011, 50, 7660-7665.
- Z. Zhang et al., Angew. Chem. Int. Ed., 2021, 60, 24266-24274.
- Y. Yang et al., ACS Nano, 2020, 14, 9562-9571.
- M. Akiyama et al., Angew. Chem. Int. Ed., 2021, 60, 22745-22752.
- J. Liu et al., Chem. Rev., 2009, 109, 1948-1998.
- L. F. Yang et al., Chem. Sci., 2023, 14, 4961-4978.
- S. Fukuyama et al., Talanta, 2021, 228, 122239.
- Y. Kitamura et al., Chem. Commun., 2013, 49, 285-287.
- T. Satoh et al., Anal. Methods, 2020, 12, 2703-2709.
- J. S. Paige et al., Science, 2011, 333, 642-646.
- G. S. Filonov et al., J. Am. Chem. Soc., 2014, 136, 16299-16308.
- E. V. Dolgosheina et al., ACS Chem. Biol., 2014, 9, 2412-2420.
- W. Song et al., Nat. Chem. Biol., 2017, 13, 1187-1194.
- A. Autour et al., Nat. Commun., 2018, 9, 656.
- S. Sato et al., Angew. Chem. Int. Ed., 2015, 54, 1855-1858.
- U. S. Kadam et al., Appl. Biol. Chem., 2023, 66, 13.
- N. J. Singhai et al., J. Drug Deliv. Sci. Technol., 2023, 87, 104880.
- P. E. Burmeister et al., Chem. Biol., 2005, 12, 25-33.
- S. F. Dowdy, Nat. Biotechnol., 2017, 35, 222-229.