LNCap細胞用 最適遺伝子導入条件

はじめに

本プロトコルは、HilyMaxを用いてLNCap細胞へ遺伝子導入を行うための最適条件を示しております。『最適遺伝子導入条件』および『遺伝子導入操作』に従い遺伝子導入を行って下さい。なお、本プロトコルは、24ウェルプレートを用いた条件を示しています。他のプレートをご使用の際は、表2『培養プレート毎での培養および遺伝子導入条件』を参照のうえ、『遺伝子導入操作』中の下線部分の条件を変更し、遺伝子導入を行って下さい。

※重要※

細胞の培養条件、継代日数等により、遺伝子導入時の最適条件が変わる可能性がございます。本条件において高い導入効率がみられない場合は、下記の『HilyMaxによる遺伝子導入例』及び『導入がうまくいかない場合の対策および確認』を参考に検討下さい。

最適遺伝子導入条件:24ウェルプレート使用時

表1 LNCap細胞における最適遺伝子導入条件

細胞密度		80%
DNA-HilyMax複合体調製条件	無血清培地	30 µl
	DNA	1.0 µg
	HilyMax	2.0-4.0 µl
	複合体調製時間	間 15 min
遺伝子導入から培地交換までの	4 hr後	

遺伝子導入操作:24ウェルプレート使用時

《細胞の準備》

LNCap細胞用の増殖培地にて懸濁

遺伝子導入時に細胞密度80%になるよう希釈した<u>細胞懸濁液0.5 ml</u>を24ウェルプレートへ添加

▼ CO₂インキュベーターにて24 hr培養

《遺伝子導入操作》

DNA-HilyMax複合体の調製

-無血清培地(抗生物質も含まない) 30 μl/wellを別途容器(エッペンドルフチューブなど)へ添加

-DNA 1.0 μg/wellを添加、混合

-HilyMax 2.0-4.0 µl/wellを添加、混合

-<u>15分間</u>、室温にてインキュベーション

LNCap細胞へDNA-HilyMax複合体を添加

CO₂インキュベーターにて18-48 hr培養

※複合体添加4 hr後に、新しい増殖培地へ交換

《導入評価》

レポーター遺伝子または目的遺伝子の発現活性を測定する。

スケールアップ&ダウン

表2 培養プレート毎での培養および遺伝子導入条件

細胞培養条件 DNA-HilyMax複合体調製条件		体調製条件			
培養容器	容器表面積	増殖培地量	培地量(無血清)	DNA量	HilyMax量
96 -well	0.3cm^2	0.1 ml	10 µl	0.2 μg	0.4-0.8 µl
24 -well	1.9 cm ²	0.5 ml	30 µl	1.0 µg	2.0-4.0 µl
12 -well	3.8 cm ²	1.0 ml	60 µl	2.0 µg	4.0-8.0 µl
6 -well	9.2 cm ²	2.0 ml	120 µl	4.0 µg	8.0-16.0 µl
35 -mm	8.0 cm ²	2.0 ml	120 µl	4.0 µg	8.0-16.0 µl
60 -mm	21.0 cm ²	5.0 ml	300 µl	10.0 μg	20.0-40.0 μl
100 -mm	58.0 cm ²	15.0 ml	900 µl	30.0 µg	60.0-120.0 µl

HilyMaxによる遺伝子導入例

図1 LNCap細胞における遺伝子導入効率

遺伝子導入前日に、24ウェルプレートへ播種、培養したLNCap細胞へ、pGL3 control vector (Promega) をHilyMaxを用いて各条件下にて遺伝子導入した。 遺伝子導入24時間後のLuciferase活性を、HilyMaxによる導入率として確認した。 LNCap細胞は、10%FBS (Gibco)を含むD-MEM培地 (Gibco)にて、凍結細胞を解凍

後約2週間継代培養したものを用いた。 細胞密度50%:1.0×10⁵ cells/well 細胞密度80%:1.6×10⁵ cells/well

導入がうまくいかない場合の対策および確認

-導入効率が顕著に低い場合-

対策1. DNA(μg):HilyMax(μl)=1:5-1:7の条件にて検討下さい。 対策2. 本プロトコル記載したDNA量の1.5-2.0倍量を使用し、 DNA(μg):HilyMax(μl)=1:2-1:4で検討下さい。

-毒性が強い場合-

対策1. 本プロトコル記載したDNA量の半分量を使用し、 DNA(μg):HilyMax(μl)=1:2-1:7で検討下さい。

-遺伝子導入時の確認-

確認1. HilyMax Reagent チューブ下部に半透明の溶け残りはありませんか?

確認2. 遺伝子導入から導入評価までの細胞培養時間は、適切ですか?

確認3. 複合体調製時の培地に、血清及び抗生物質は入っていませんか?