マイトファジー:損傷ミトコンドリアの選択的分解
Mitophagy: Selective degradation of damaged mitochondria
[参考文献]
- 1) T. Kitada, et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, 1998, 392, 605-608.
- 2) E. M. Valente, et al., Hereditary early-onset Parkinson's disease caused by mutations in PINK1, Science, 2004, 304, 1158-1160.
- 3) I. E. Clark, et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 2006, 441, 1162-1166.
- 4) J. Park, et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, 2006, 441, 1157-1161.
- 5) D. Narendra, A. Tanaka, D. F. Suen and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, The Journal of cell biology, 2008, 183, 795-803.
- 6) D. P. Narendra, et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS biology, 2010, 8, e1000298.
- 7) N. Matsuda, et al., PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, The Journal of cell biology, 2010, 189, 211-221.
- 8) S. Geisler, et al., PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nature cell biology, 2010, 12, 119-131.
- 9) C. Vives-Bauza, et al., PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 378-383.
- 10) J. F. Trempe, et al., Structure of parkin reveals mechanisms for ubiquitin ligase activation, Science, 2013, 340, 1451-1455.
- 11) F. Koyano, et al., Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, 2014, 510, 162-166.
- 12) L. A. Kane, et al., PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity, The Journal of cell biology, 2014, 205, 143-153.
- 13) A. Kazlauskaite, et al., Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65, The Biochemical journal, 2014, 460, 127-139.
- 14) M. Lazarou, et al., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, 2015, 524, 309-314.
- 15) S. M. Jin, et al., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, The Journal of cell biology, 2010, 191, 933-942.
- 16) C. Meissner, H. Lorenz, A. Weihofen, D. J. Selkoe and M. K. Lemberg, The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking, Journal of neurochemistry, 2011, 117, 856-867.
- 17) E. Deas, et al., PINK1 cleavage at position A103 by the mitochondrial protease PARL, Human molecular genetics, 2011, 20, 867-879.
- 18) K. Yamano and R. J. Youle, PINK1 is degraded through the N-end rule pathway, Autophagy, 2013, 9, 1758-1769.
- 19) M. Lazarou, S. M. Jin, L. A. Kane and R. J. Youle, Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Developmental cell, 2012, 22, 320-333.
- 20) K. Okatsu, et al., A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment, The Journal of biological chemistry, 2013, 288, 36372-36384.
- 21) K. Okatsu, et al., PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria, Nature communications, 2012, 3, 1016.
- 22) K. Shiba-Fukushima, et al., PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy, Scientific reports, 2012, 2, 1002.
- 23) C. Kondapalli, et al., PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open biology, 2012, 2, 120080.
- 24) M. Iguchi, et al., Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation, The Journal of biological chemistry, 2013, 288, 22019-22032.
- 25) K. Okatsu, et al., Phosphorylated ubiquitin chain is the genuine Parkin receptor, The Journal of cell biology, 2015, 209, 111-128.
- 26) K. Yamano, et al., Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation, The Journal of biological chemistry, 2015.
- 27) T. Wauer and D. Komander, Structure of the human Parkin ligase domain in an autoinhibited state, The EMBO journal, 32, 2013, 2099-2112.
- 28) T. Wauer, M. Simicek, A. Schubert and D. Komander, Mechanism of phospho-ubiquitin-induced PARKIN activation, Nature, 2015, 524, 370-374.
- 29) A. Ordureau, et al., Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Molecular cell, 2014, 56, 360-375.
- 30) S. A. Sarraf, et al., Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, 2013, 496, 372-376.
- 31) K. Yamano, N. Matsuda and K. Tanaka, The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation, EMBO reports, 2016, 17, 300-316.
- 32) A. M. Pickrell and R. J. Youle, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease, Neuron, 2015, 85, 257-273.

|
