脂肪滴と様々なオルガネラとの接触
Lipid droplets contact with various organelles
[参考文献]
- 1) R. V. Farese, Jr. and T. C. Walther, Lipid droplets finally get a little R-E-S_P-E-C-T, Cell, 2009, 139, 855-860.
- 2) J. A. Olzmann and P. Carvalho, Dynamics and functions of lipid droplets, Nature reviews. Molecular cell biology, 2018.
-
- 3) V. Choudhary, N. Ojha, A. Golden and W. A. Prinz, A conserved family of proteins facilitates nascent lipid droplet budding from the ER, J. Cell Biol., 2015, 211, 261-271.
- 4) H. Wang, M. Becuwe, B. E. Housden, C. Chitraju, A. J. Porras, M. M. Graham, X. N. Liu, A. R. Thiam, D. B. Savage, A. K. Agarwal, A. Garg, M. J. Olarte, Q. Lin, F. Frohlich, H. K. Hannibal-Bach, S. Upadhyayula, N. Perrimon, T. Kirchhausen, C. S. Ejsing, T. C. Walther and R. V. Farese, Seipin is required for converting nascent to mature lipid droplets, Elife, 2016, 5.
- 5) N. Gomez-Navarro and E. A. Miller, COP-coated vesicles, Curr. Biol., 2016, 26, R54-R57.
- 6) K. Ben M'barek, D. Ajjaji, A. Chorlay, S. Vanni, L. Foret and A. R. Thiam, ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation, Dev. Cell, 2017, 41, 591-604e597.
- 7) A. R. Thiam and L. Foret, The physics of lipid droplet nucleation, growth and budding, Biochim. Biophys. Acta., 2016, 1861, 715-722.
- 8) B. R. Cartwright, D. D. Binns, C. L. Hilton, S. Han, Q. Gao and J. M. Goodman, Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology, Mol. Biol. Cell, 2015, 26, 726-739.
- 9) Q. Gao, D. D. Binns, L. N. Kinch, N. V. Grishin, N. Ortiz, X. Chen and J. M. Goodman, Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly, J. Cell Biol., 2017, 216, 3199-3217.
- 10) D. L. Brasaemle, G. Dolios, L. Shapiro and R. Wang, Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes, J. Biol. Chem., 2004, 279, 46835-46842.
- 11) P. Liu, Y. Ying, Y. Zhao, D. I. Mundy, M. Zhu and R. G. Anderson, Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic, J. Biol. Chem., 2004, 279, 3787-3792.
- 12) N. Krahmer, M. Hilger, N. Kory, F. Wilfling, G. Stoehr, M. Mann, R. V. Farese, Jr. and T. C. Walther, Protein correlation profiles identify lipid droplet proteins with high confidence, Mol. Cell Proteomics, 2013, 12, 1115-1126.
- 13) K. Bersuker and J. A. Olzmann, Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation, Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 2017, 1862, 1166-1177.
- 14) K. Bersuker, C. W. H. Peterson, M. To, S. J. Sahl, V. Savikhin, E. A. Grossman, D. K. Nomura and J. A. Olzmann, A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes, Dev. Cell, 2018, 44, 97-112 e117.
- 15) A. M. Valm, S. Cohen, W. R. Legant, J. Melunis, U. Hershberg, E. Wait, A. R. Cohen, M. W. Davidson, E. Betzig and J. Lippincott-Schwartz, Applying systems-level spectral imaging and analysis to reveal the organelle interactome, Nature, 2017, 546, 162-167.
- 16) W. A. Prinz, Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics, J. Cell Biol., 2014, 205, 759-769.
- 17) N. Shai, E. Yifrach, C. W. T. van Roermund, N. Cohen, C. Bibi, I. J. Lodewijk, L. Cavellini, J. Meurisse, R. Schuster, L. Zada, M. C. Mari, F. M. Reggiori, A. L. Hughes, M. Escobar-Henriques, M. M. Cohen, H. R. Waterham, R. J. A. Wanders, M. Schuldiner and E. Zalckvar, Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact, Nat. Commun., 2018, 9, 1761.
- 18) N. Jacquier, V. Choudhary, M. Mari, A. Toulmay, F. Reggiori and R. Schneiter, Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae, J. Cell Sci., 2011, 124, 2424-2437.
- 19) V. T. Salo, I. Belevich, S. Li, L. Karhinen, H. Vihinen, C. Vigouroux, J. Magre, C. Thiele, M. Holtta-Vuori, E. Jokitalo and E. Ikonen, Seipin regulates ER-lipid droplet contacts and cargo delivery, EMBO J., 2016, 35, 2699-2716.
- 20) N. Xu, S. O. Zhang, R. A. Cole, S. A. McKinney, F. Guo, J. T. Haas, S. Bobba, R. V. Farese, Jr. and H. Y. Mak, The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface, J. Cell Biol., 2012, 198, 895-911.
- 21) D. Xu, Y. Li, L. Wu, Y. Li, D. Zhao, J. Yu, T. Huang, C. Ferguson, R. G. Parton, H. Yanga nd P. Li, Rab18 promotes lipid droplet(LD) growth by tethering the ER to LDs through SNARE and NRZ interactions, J. Cell Biol., 2018, 217, 975-995.
- 22) D. F. Markgraf, R. W. Klemm, M. Junker, H. K. Hannibal-Bach, C. S. Ejsing and T. A. Rapoport, An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER, Cell Rep., 2014, 6, 44-55.
- 23) A. Romanauska and A. Kohler, The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets, Cell, 2018, 174, 700-715 e718.
- 24) Y. Ohsaki, T. Kawai, Y. Yoshikawa, J. Cheng, E. Jokitalo and T. Fujimoto, PML isoform II plays a critical role in nuclear lipid droplet formation, J. Cell Biol., 2016, 212, 29-38.
- 25) A. S. Rambold, S. Cohen and J. Lippincott-Schwartz, Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics, Dev. Cell, 2015, 32, 678-692.
- 26) T. B. Nguyen, S. M. Louie, J. R. Daniele, Q. Tran, A. Dillin, R. Zoncu, D. K. Nomura and J. A. Olzmann, DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy, Dev. Cell, 2017, 42, 9-21 e25.
- 27) A. Herms, M. Bosch, B. J. Reddy, N. L. Schieber, A. Fajardo, C. Ruperez, A. Fernandez-Vidal, C. Ferguson, C. Rentero, F. Tebar, C. Enrich, R. G. Parton, S. P. Gross and A. Pol, AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation, Nat. Commun., 2015, 6, 7176.
- 28) M. A. Tarnopolsky, C. D. Rennie, H. A. Robertshaw, S. N. Fedak-Tarnopolsky, M. C. Devries and M. J. Hamadeh, Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292, R1271-1278.
- 29) I. Y. Benador, M. Veliova, K. Mahdaviani, A. Petcherski, J. D. Wikstrom, E. A. Assali, R. Acin-Perez, M. Shum, M. F. Oliveira, S. Cinti, C. Sztalryd, W. D. Barshop, J. A. Wohlschlegel, B. E. Corkey, M. Liesa and O. S. Shirihai, Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion, Cell Metab., 2018, 27, 869-885 e866.
- 30) H. Wang, U. Sreenivasan, H. Hu, A. Saladino, B. M. Polster, L. M. Lund, D. W. Gong, W. C. Stanley and C. Sztalryd, Perilipin 5, a lipid droplet_associated protein, provides physical and metabolic linkage to mitochondria, J. Lipid. Res., 2011, 52, 2159-2168.
- 31) M. Boutant, S. S. Kulkarni, M. Joffraud, J. Ratajczak, M. Valera-Alberni, R. Combe, A. Zorzano and C. Canto, Mfn2 is critical for brown adipose tissue thermogenic function, EMBO J., 2017, 36, 1543-1558.
- 32) R. Dirkx, I. Vanhorebeek, K. Martens, A. Schad, M. Grabenbauer, D. Fahimi, P. Declercq, P. P. Van Veldhoven and M. Baes, Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities, Hepatology, 2005, 41, 868-878.
- 33) S. Kaushik and A. M. Cuervo, Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis, Nat. Cell Biol., 2015, 17, 759-770.
- 34) B. Schroeder, R. J. Schulze, S. G. Weller, A. C. Sletten, C. A. Casey and M. A. McNiven, The small GTPase Rab7 as a central regulator of hepatocellular lipophagy, Hepatology, 2015, 61, 1896-1907.
- 35) J. L. Schneider, Y. Suh, A. M. Cuervo, Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation, Cell Metab., 2014, 20, 417-432.
- 36) S. Kaushik and A. M. Cuervo, AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA, Autophagy, 2016, 12, 432-438.
- 37) H. Hariri, S. Rogers, R. Ugrankar, Y. L. Liu, J. R. Feathers and W. M. Henne, Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress, EMBO Rep., 2018, 19, 57-72.
- 38) D. Bryant, Y. Liu, S. Datta, H. Hariri, M. Seda, G. Anderson, E. Peskett, C. Demetriou, S. Sousa, D. Jenkins, P. Clayton, M. Bitner-Glindzicz, G. E. Moore, W. M. Henne and P. Stanier, SNX14 mutations affect endoplasmic reticulum-associated neutral lipid metabolism in autosomal recessive spinocerebellar ataxia 20, Hum. Mol. Genet., 2018, 27, 1927-1940.
- 39) M. Eisenberg-Bord, M. Mari, U. Weill, E. Rosenfeld-Gur, O. Moldavski, I. G. Castro, K. G. Soni, N. Harpaz, T. P. Levine, A. H. Futerman, F. Reggiori, V. A. Bankaitis, M. Schuldiner and M. Bohnert, Identification of seipin_linked factors that act as determinants of a lipid droplet subpopulation, J. Cell Biol., 2018, 217, 269-282.
- 40) V. Teixeira, L. Johnsen, F. Martinez-Montanes, A. Grippa, L. Buxo, F. Z. Idrissi, C. S. Ejsing and P. Carvalho, Regulation of lipid droplets by metabolically controlled Ldo isoforms, J. Cell Biol., 2018, 217, 127-138.
 |
