トップページ > ドージンニュース > Vol.164 > Dojindo Products in Mechanistic Studies of Reactive Sulfur Species

Dojindo Products in Mechanistic Studies of Reactive Sulfur Species

[References]

1) S. G. Rhee, Cell signaling. H2O2, a necessary evil for cell signaling. Science (2006) 312, 1882-1883.

2) M. M. Cortese-Krott, A. Koning, G. G. C. Kuhnle, P. Nagy, C. L. Bianco, A. Pasch, D. A. Wink, J. M. Fukuto, A. A. Jackson, H. van Goor, K. R. Olson, M. Feelisch, The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal (2017) 27, 684-712.

3) C. Szabo, Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov (2007) 6, 917-935.

4) J. L. Wallace, R. Wang, Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov (2015) 14, 329-345.

5) E. Doka, I. Pader, A. Biro, K. Johansson, Q. Cheng, K. Ballago, J. R. Prigge, D. Pastor-Flores, T. P. Dick, E. E. Schmidt, E. S. Arner, P. Nagy, A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv (2016) 2, e1500968.

6) T. Ida, T. Sawa, H. Ihara, Y. Tsuchiya, Y. Watanabe, Y. Kumagai, M. Suematsu, H. Motohashi, S. Fujii, T. Matsunaga, M. Yamamoto, K. Ono, N. O. Devarie-Baez, M. Xian, J. M. Fukuto, T. Akaike, Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad. Sci. USA, (2014) 111, 7606-7611.

7) H. Kimura, Hydrogen sulfide: its production, release and functions. Amino Acids (2011) 41, 113-121.

8) P. Nagy, Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol, (2015) 554, 3-29.

9) K. Ono, T. Akaike, T. Sawa, Y. Kumagai, D. A. Wink, D. J. Tantillo, A. J. Hobbs, P. Nagy, M. Xian, J. Lin, J. M. Fukuto, Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med (2014) 77, 82-94.

10) R. Wang, Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev (2012) 92, 791-896.

11) A. K. Mustafa, M. M. Gadalla, N. Sen, S. Kim, W. Mu, S. K. Gazi, R. K. Barrow, G. Yang, R. Wang, S. H. Snyder, H2S signals through protein S-sulfhydration. Sci Signal (2009) 2, ra72.

12) T. Akaike, T. Ida, F. Y. Wei, M. Nishida, Y. Kumagai, M. M. Alam, H. Ihara, T. Sawa, T. Matsunaga, S. Kasamatsu, A. Nishimura, M. Morita, K. Tomizawa, A. Nishimura, S. Watanabe, K. Inaba, H. Shima, N. Tanuma, M. Jung, S. Fujii, Y. Watanabe, M. Ohmuraya, P. Nagy, M. Feelisch, J. M. Fukuto, H. Motohashi, Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun (2017) 8, 1177.

13) R. Pietri, E. Roman-Morales, J. Lopez-Garriga, Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal (2011) 15, 393-404.

14) B. B. Rios-Gonzalez, E. M. Roman-Morales, R. Pietri, J. Lopez-Garriga, Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem (2014) 133, 78-86.

15) D. Garai, B. B. Rios-Gonzalez, P. G. Furtmuller, J. M. Fukuto, M. Xian, J. Lopez-Garriga, C. Obinger, P. Nagy, Mechanisms of myeloperoxidase catalyzed oxidation of H2S by H2O2 or O2 to produce potent protein Cys-polysulfide-inducing species. Free Radic Biol Med (2017) 113, 551-563.

16) Z. Palinkas, P. G. Furtmuller, A. Nagy, C. Jakopitsch, K. F. Pirker, M. Magierowski, K. Jasnos, J. L. Wallace, C. Obinger, P. Nagy, Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol (2015) 172, 1516-1532.

17) S. Nakamura, M. Nakamura, I. Yamazaki, M. Morrison, Reactions of ferryl lactoperoxidase (compound II) with sulfide and sulfhydryl compounds. J Biol Chem (1984) 259, 7080-7085.

18) K. R. Olson, Y. Gao, E. R. DeLeon, M. Arif, F. Arif, N. Arora, K. D. Straub, Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol (2017) 12, 325-339.

19) D. Padovani, A. Hessani, F. T. Castillo, G. Liot, M. Andriamihaja, A. Lan, C. Pilati, F. Blachier, S. Sen, E. Galardon, I. Artaud, Sulfheme formation during homocysteine S-oxygenation by catalase in cancers and neurodegenerative diseases. Nat Commun (2016) 7, 13386.

20) D. G. Searcy, J. P. Whitehead, M. J. Maroney, Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys (1995) 318, 251-263.

21) C. Kevil, M. M. Cortese-Krott, P. Nagy, A. Papapetropoulos, M. Feelisch, C. Szabo, in Nitric Oxide (Third Edition), B. A. Freeman, Ed. (Academic Press, 2017), 57-83.

22) M. M. Cortese-Krott, G. G. Kuhnle, A. Dyson, B. O. Fernandez, M. Grman, J. F. DuMond, M. P. Barrow, G. McLeod, H. Nakagawa, K. Ondrias, P. Nagy, S. B. King, J. E. Saavedra, L. K. Keefer, M. Singer, M. Kelm, A. R. Butler, M. Feelisch, Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci USA (2015) 112, E4651-4660.

23) D. Garai, Zoltán Pálinkás, Jázsef Balla, Anthony J. Kettle, P. Nagy, Measurements for sulfide-mediated inhibition of myeloperoxidase activity in press (2018).

24) P. Nagy, C. C. Winterbourn, Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol (2010) 23, 1541-1543.

25) A. Vasas, Kinetics and mechanisms of some biologically important redox reactions mediated by hydrogen sulfide Ph. D. Thesis (2015).

26) E. Doka, E. S. J. Arner, E. E. Schmidt, P. Nagy, in Methods Mol Biol, J. Beltowski, Ed. (Springer, in press, 2017), vol. Special Issue.

閉じる
ページの上部へ戻る