新しい細胞死ネクロトーシス 〜プログラムされたネクローシス〜
参考文献
1) J. F. Kerr, et al., “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics”, Br. J. Cancer, 1972, 26, 239-257.
2) R. A. Lockshin, et al., “Programmed cell death - U. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths”, J. Insect Physiol., 1964, 10, 643-649.
3) J. U. Schweichel, et al., “The morphology of various tipes of cell death inprenatal tissues”, Teratology, 1973, 7, 253-266.
4) G. Kroemer, et al., “Classification of cell death: recommendations of the nomenclature committee on cell death”, Cell Death Differ., 2009, 16, 3-11.
5) M. V. Fiandalo, et al., “Caspase control: protagonists of cancer cell apoptosis”, Exp. Oncol., 2012, 34, 165-175.
6) S. Elmore, “Apoptosis: a review of programmed cell death.” Toxicol Pathol., 2007, 35, 495-516.
7) P. Vandabeele, et al., “Molecular mechanisms of necroptosis: an ordered cellulae explosion”, Nature Reviews Mol. Cell Biol., 2010, 11, 700-714.
8) B. Levine, et al., “Autophagy in cell death: an innocent convict? ” J. Clin. Invest., 2005, 115, 2679-2688.
9) 北中千史, “Non-apoptotic 細胞死:アポトーシスとは形態・制御機構を異にするプログラム細胞死の存在と意義について”, 山形医学,2005, 23(1) , 82-96.
10) S. M. Laster, et al., “Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis”, J. Immunol., 1988, 141, 2629-2634.
11) F. K. Chen, et al., “A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses”, J. Biol. Chem., 2003, 278, 51613-51621.
12) A. Degterev, et al., “Chemical inhibitior of nonapoptotic cell death with therapeutic potential for ischemic brain injury”, Nature Chem. Biol., 2005, 1, 112-119.
13) H. Hsu, et al., “TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex”, Immunity, 1996, 4, 387-396.
14) N. Holler, et al., “Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule”, Nature Immunol., 2000, 1, 489-495.
15) D. Vercammen, et al., “Inhibition of caspase increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor”, J. Exp. Med., 1998, 187, 1477-1485.
16) H. Jurevics, et al., “Cholesterol for synthesis of myelin is made locally, not imported into brain”, J. Neurochem., 1995, 64, 895-901.
17) I. Bjorkhem, et al., “Brain cholesterol: long secret life behind a barrier”, Arter. Thromb. Vas. Biol., 2004, 24, 806-815.
18) I. Bjorkhem, et al., “Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro”, J. Biol. Chem., 1997, 272, 30178-30184.
19) S. B. Joseph, et al., “Synthetic LXR ligand inhibits the development of atherosclerosis in mice”, Proc. Nat. Acad. Sci. USA., 2002, 99, 7604-7609.
20) A. Radhakrishnan, et al., “Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig”, Proc. Nat. Acad. Sci. USA., 2007, 104, 6511-6518.
21) D. Lütjohann, et al., “Plasma 24S-hydroxycholesterol(cerebrosterol) is increased in Alzheimer and vascular demented patients”, J. Lipid Res., 2000, 41, 195-198.
22) T. M. Jeitner, et al., “Oxysterol derivatives of cholesterol in neurodegenerative disorders”, Curr. Med. Chem., 2011, 18, 1515-1525.
23) M. Shafaati, et al., “Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitived disorders”, Neurosci. Lett., 2007, 425, 78-82.
24) H. Kölsch, et al., “CYP46A1 variants influence Alzheimer's disease risk and brain cholesterol metabolism”, Eur. Psychiatry., 2009, 24, 183-190.
25) H. Kölsch, et al., “The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells”, Brain Res., 1999, 818, 171-175.
26) K. Yamanaka, et al., “24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis”, J. Biol. Chem., 2011, 286, 24666-24673.
27) K. Schulze-Osthoff, et al., “Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation”, J. Biol. Chem., 1992, 267, 5317-5323.
28) D. W. Zhang, et al., “RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis”, Science, 2009, 325, 332-336.
29) N. Vanlangenakker, et al., “Molecular mechanisms and pathophysiology of necrotic cell death”, Curr. Mol. Med., 2008, 8, 207-220.
30) Y. S. Kim, et al., “TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death”, Mol. Cell, 2007, 26, 675-687.
31) K. Yamanaka, et al., “A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells”, RSC adv., 2012, 2, 7894-7900. |