Quantitation and Identification of Various Nitrosothiols in Biological Systems
赤池 孝章
(Takaaki AKAIKE)
熊本大学医学部微生物学教室
Summary
Nitrosothiols (thionitrites: RS-NOs) seems to be critically involved in a diverse array of biological phenomena. In this review, the basic and chemical properties of RS-NOs are described, and subsequently introducing the RS-NO analytical technique that has been used for detection of RS-NO formation in biological system. Of considerable importance of the RS-NO chemistry is the fact that formation and disintegration of RS-NOs are catalyzed by some kind of heavy metal ions, of which reaction mechanism is only partly clarified. In this regards, a most conventional quantification reported by Saville several decades ago is based on the stoichiometric decomposition of RS-NOs to NO2- (or NO+) by Hg2+ ion. There are a number of analytical methods for RS-NO determination including uv/visible spectroscopy, fluorescence spectroscopy, and the high performance liquid chromatography (HPLC) analysis which combined chemiluminescence or electrochemical detector. However, so far a convenient and reproducible measurement for RS-NOs with sufficient specificity and sensitivity had not been available. Lately, we invented a novel RS-NO assay by use of HPLC coupled with a flow reactor system of metal ions and Griess reagent. Briefly, RS-NO was applied to the HPLC system of C18-reverse phase or a gel filtration column, and was eluted with 10 mM sodium acetate buffer (pH 5.5) with or without either methanol or 0.15 M NaCl. The eluate from the HPLC column is connected to mix with a solution containing HgCl2 for RS-NO decomposition in a reaction coil via the three-way connector. NO2- generated via the metal-induced RS-NO decomposition was then reacted with Griess reagent, which is infused through the second three-way connector, yielding a diazo-compound detected at 540 nm. The RS-NOs could be identified at nanomolar concentrations: detection limit, 3.0 nM. All of RS-NOs showed well-resolved elution profile even in the presence of NO2- and NO3-. Biological generation of GS-NO was quantitatively demonstrated with a macrophage cell line in culture stimulated with or without lipopolysaccharide and interferon-γ to express an inducible NO synthase. Because the physiological significance of RS-NO still remains obscure, specific and sensitive RS-NO detection techniques such as HPLC -flow reactor system as described in this review will be essential to analyze the formation and functions of RS-NOs in biological systems.
Stamlerらによりこれまで生体内におけるRS-NO生成についていくつかの報告がなされている2)。生体試料中に見出されるRS-NOは、低分子のものではグルタチン(reduced form of glutathine, GSH)や高分子のものでは血中のアルブミン(albumin)およびヘモグロビンのβ鎖などの蛋白の遊離(free)のcysteine残基のNO+の付加体である。この様なRS-NOはNOそのもののチオール基との直接的な反応によって生じるというより、以下の反応式(eq. 1-3)に示す、NOの酸化反応の過程で生じるNOx(N2O3)によって生成するものと思われる3)4)。
1) J. S. Stamler, D. J. Singel and J. Loscalzo, Biochemistry of nitric oxide and its redox-activated forms, Science, 258, 1898-1902 (1992).
2) J. S. Stamler, Redox signalling: nitrosylation and related target interactions of nitric oxide, Cell, 78, 931-936 (1994).
3) E. G. DeMaster, B. J.Quast, B. Redfern and H. H. Nagasawa, Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide, Biochemistry, 34, 11494-11499 (1995).
4) V. G. Kharitonov, A. R. Sundquist and V. S. Sharma, Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen, J. Biol. Chem., 270, 28158-28164 (1995).
5) A. F. Vanin, Roles of iron ions and cysteine in formation and decomposition of S-nitrosocysteine and S-nitrosoglutathine, Biochemistry (Moscow), 60, 441-447 (1995).
6) A. P. Dicks, H. R. Swift, D. L. H. Williams, A. R. Butler, H. H. Al-Sa'doni and B. G. Cox, Identification of Cu+ as the effective reagent in nitric oxide formation from S-nitrosothiols (RSNO), J. Chem. Soc.., Perkin Trans.2, 1996, 481-487(1996).
7) D. L. H. Williams, S-Nitrosothiols and role of metal irons in decomposition to nitric oxide, Methods Enzymol., 268, 299-308 (1996).
8) D. R. Arnelle and J. S. Stamler, NO+, NO・, NO- donation by S-nitrosothiols: Implications for regulation of physiological function by S-nitrosylation and acceleration of disulfide formation, Arch. Biochem. Biophys., 318, 279-285 (1995).
9) B. Saville, A scheme for the colorimetric determination of microgram amounts of thiols, Analsyt, 83, 670-672 (1958).
10) R. W. Nims, J. C. Cook, M. C. Krishna, D. Christodoulou, C. M. B. Poore, A. M. Miles, M. B. Grisham and D. A. Wink, Colorimetric assays for nitric oxide and nitrogen oxide species formed from nitric oxide stock solutions and donor compounds, Methods Enzymol., 268, 93-105 (1996).
11) J. A. Cook, S. Y. Kim, D. Teague, M. C. Krishna, R. Pacelli, J. B. Mitchell, Y. Vodovotz, R. W. Nims, D. Christodoulou, A. M. Miles, M. B. Grisham and D. A. Wink, Convenient colorimetric and fluorometric assays for S-nitrosothiols, Anal. Biochem., 238, 150-158 (1996).
12) H. Rubbo, V. Darley-Usmar and B. A. Freeman, Nitric oxide regulation of tissue free radical injury, Chem. Res. Toxicol., 9, 809-820 (1996).
13) J. S. Stamler, O. Jaraki, J. A. Osborne, D. I. Simon, J. Keaney, J. Vita, D. Singel, C. R. Valeri and J. Loscalzo, Nitric oxide circulates in mammalian plasma primarily on an S-nitroso adduct of serum albumin, Proc. Natl. Acad. Sci. USA, 89, 7674-7677 (1992).
14) G. N. Welch, G. R. Upchurch Jr. and J. Loscalzo, S-Nitrosothiol detection, Methods Enzymol., 268, 293-298 (1996).
15) T. Akaike, K. Inoue, T. Okamoto, H. Nishino, M. Otagiri, S. Fujii and H. Maeda, Nanomolar quantification and identification of various nitrosothiols by high performance liquid chromatography coupled with flow reactors of metals and Griess reagent, J. Biochem.(in press) (1997).
16) T. Akaike and H. Maeda, Quantitation of nitric oxide using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), Methods Enzymol., 268, 211-221 (1996).
Takaaki Akaike, M. D., Ph. D. Associate Professor at Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 860, Japan. Tel: 096-373-5100; Fax: 096-362-8362;